AI could help estimate harvest times while predicting yields more accurately. For example, says Alarcon, preliminary data has shown that when growers have low plant water stress index levels (PWSI) the possibility to have above average yields increases significantly. He says that PWSI information therefore could be used in the future to estimate yields thus aiding in the prediction of possible crop shortages. Similarly, the smart integration of aerial images might help in the planning of harvest schedules that could assist in the effective coordination of a continuous and steady stream of incoming fruit for factories.
“AI could also aid in the improvement of the quality and nutritional value of fruit such as natural tomato soluble solids (brix). By using smart technologies growers might be able to manage pre-harvest irrigation, to gradually regulate plant stress to a desirable point where fruit can increase brix levels without the negative impact of yield loss,” Alarcon says. At a more regional level, AI can be useful in the generation of economic models using field and environmental data to predict yields projections and estimate future commodity prices, he adds.
Preliminary data shows that yields have had a steady improvement with growers that have actively adopted them. Optimization of irrigation management practices can help them get better production while optimizing water usage (and cost).
AI will help to solve several issues during the various stages of the supply chain. “For example, in some places where labor is scarce or weather conditions are extreme, AI models will be essential to develop autonomous planters, weeders, harvesters and even driver-less grain combines,” says Alarcon. “At the tomato processing facility levels, yard automation will be a standard soon, where autonomous shuttles will efficiently move loaded trailers to fruit dumping areas.” FE