Artificial Intelligence (AI) algorithms can be used to optimize food and beverage manufacturing supply chains, helping companies anticipate market changes. This information allows manufacturers to optimize staffing, inventory control, energy consumption, waste reduction, food safety and the supply of raw materials.
According to Business Wire, artificial intelligence in the food and beverage market was valued at US $3.07 billion in 2020 and is expected to reach $29.94 billion by 2026, at a CAGR of over 45.77% during the forecast period 2021-2026.
AI is hitting new adoption levels each year, with supply chain management in logistics taking center stage. Companies are increasingly testing the technology in logistics to improve on the last-mile delivery, reduce the time to go to market, and provide for the required customization to customers.
An overview
McKinsey & Company guides global manufacturing and supply chain clients through the design and implementation of operational strategies, creating agility and a product portfolio that is both commercially and operationally optimized. We looked to Curt Mueller, senior partner at McKinsey & Company based in Chicago, for a snapshot of AI use in manufacturing.
“The COVID-19 pandemic has sharpened the need to adapt operations as consumers reshape their consumption patterns, with lingering uncertainty about the long-term effects of the crisis,” Mueller says. “For example, planning for swings in supply and demand, and scheduling shipments have become much bigger challenges for food and beverage manufacturers. Traditional forecasting algorithms are no longer sufficiently flexible for the rapidly changing levels of demand and supply.”
Mueller explains how artificial intelligence is changing the way companies plan, schedule and operate their supply chains in three ways:
• Planning – “We are seeing more and more companies use AI and machine learning to plan their supply chains. We used to see many interventions and the use of judgment in planning, next came analytics where complex algorithms were developed. Now we are entering into a new phase where the machine does the planning and removes most, if not all, of the human touch or intuition.”
• Manufacturing – “AI has exploded recently in manufacturing and will continue to grow at a substantial pace. Technology is now at an affordable threshold that companies large and small can benefit from greater AI with automation, preventative maintenance, center-lining, as a few examples.”
• Logistics – “Digital twins are changing the way logistics and warehousing work today. AI-powered digital twins show companies how best to plan, pick and ship their warehouses. Here is where AI and the physical world are colliding to make tremendous step changes in productivity.”
There is more data available than ever before, and Mueller says that it is no longer enough for food and beverage manufacturers to monitor structured transactional and supply chain data. For example, retailers can help their suppliers by capturing the millions of daily events and interactions, and analyze the data to make data-based decisions to adjust to supply and demand, and optimize experience and productivity.
However, Mueller believes that AI only can help with the designed parameters and only how good the humans are in implementing AI. And, that it’s crucial for executives to build organizations around “products” (such as customer care or warehouse management) and not focus solely on applications.
“You can argue that AI, at its current level of maturity, would have been very difficult to not only predict but also react to the massive shocks we saw with COVID. I am confident that we will learn more and AI will be one important tool to governing supply risks in the future” he says.